

FEATURES AND BENEFITS

- AEC-Q100 qualified (K version)
- Closed-loop speed control
- Speed curve configuration via EEPROM
- I²C serial port
- Sinusoidal modulation for reduced audible noise and low vibration
- Sensorless (no Hall sensors required)
- Low R_{DS(ON)} power MOSFETs—3 A capability
- Minimal external components
- PWM speed input
- FG speed output
- RD rotor lock output
- Lock detection
- Soft start
- Standby mode
- Shorted load protection

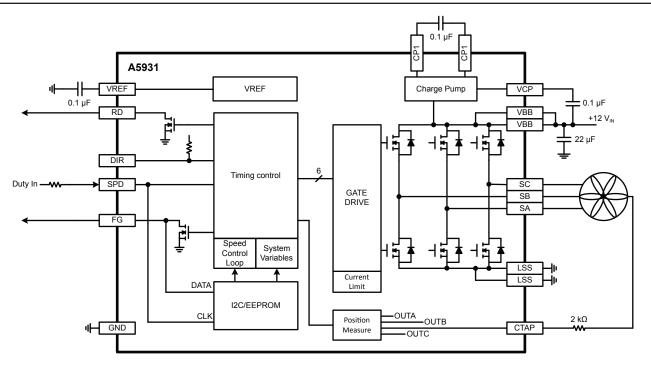
DESCRIPTION

The A5931 three-phase motor driver IC incorporates sensorless sinusoidal drive to minimize vibration for high speed server fans. Sensorless control eliminates the requirement for Hall sensors for server fan applications.

A flexible closed-loop speed control system is integrated into the IC. EEPROM is used to tailor the common functions of the fan speed curve to a specific application. This eliminates the requirement for a microprocessor-based system and minimizes programming requirements.

The A5931 is available in a 24-contact 4 mm × 4 mm QFN with exposed thermal pad (suffix ES), and a 16-lead TSSOP with exposed thermal pad (suffix LP). These packages are lead (Pb) free, with 100% matte-tin leadframe plating.

PACKAGES:


16-lead TSSOP with exposed thermal pad (LP package)

24-contact OFN with exposed thermal pad $4~mm \times 4~mm \times 0.75~mm$ (ES package)

Not to scale

Figure 1: Typical Application

SPECIFICATIONS

SELECTION GUIDE

Part Number	Operating Temperature Range (T _A) (°C)		Packing	
A5931GESTR-T	-40 to 105	24-contact QFN with exposed thermal pad	1500 pieces per 7-inch reel	
A5931GLPTR-T	-40 to 105	16-lead TSSOP with exposed thermal pad	4000 pieces per 13-inch reel	
A5931KLPTR-T	-40 to 125	16-lead TSSOP with exposed thermal pad	4000 pieces per 13-inch reel	

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V	DC	18	V
Supply Voltage	V _{BB}	t _w < 10 ms	20	V
Logic Input Voltage Range	V _{IN}	SPD, DIR	-0.3 to 6	V
Logic Output	Vo	FG, RD	V _{BB}	V
Output Current	I _{OUT}		internally limited	Α
Output Voltage	V _{OUT}		V _{BB} + 1	V
Junction Temperature	TJ		150	°C
Storage Temperature Range	T _{stg}		-55 to 150	°C
Operating Temperature Range	_	Range G	-40 to 105	°C
Operating remperature Range	T _A	Range K	-40 to 125	°C

RECOMMENDED OPERATIONAL RANGE

Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit
Supply Voltage	V_{BB}	DC	5	12	16	V
Logic Input Voltage Range	V _{IN}	PWM	-0.3	-	6	V
Motor Current	I _{OUT}	Motor phase current – sinusoidal running mode	_	_	3000	mA

THERMAL CHARACTERISTICS

Characteristic Symbol		Test Conditions*	Value	Unit
Dealtons Thomas Desistance	$R_{\theta JA}$	24-contact QFN (package ES), on 2-sided PCB 1-in. ² copper		°C/W
Package Thermal Resistance		16-lead TSSOP (package LP), on 2-sided PCB 1-in.2 copper	35	°C/W

^{*}Additional thermal information available on the Allegro website.

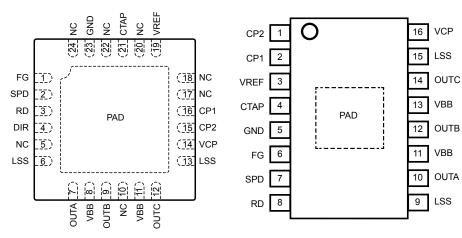

Three-Phase Sensorless Fan Driver IC

Table of Contents

1	Speed Curve Parameters	9
1	RD Function	11
1	EEPROM Map	15
1	Serial Port Control Option	17
2	Serial Port	18
2	I ² C Timing Diagrams	18
2	Write Command	19
2	Read Command	19
2	Programming EEPROM	20
4	Application Information	22
5	Pin Diagrams	23
7	Package Outline Drawings	24
7		
_	1 1 1 2 2 2 2 2 2 4 5 7	1 RD Function 1 EEPROM Map 1 Serial Port Control Option 2 Serial Port 2 I ² C Timing Diagrams 2 Write Command 2 Read Command 2 Programming EEPROM 4 Application Information 5 Pin Diagrams

PINOUT DIAGRAMS AND TERMINAL LIST TABLE

ES Package Pinouts

LP Package Pinouts

Terminal List Table

Terminal	Number	Mana	Function
ES Package	LP Package	Name	Function
1	6	FG	Output signal
2	7	SPD	Logic input – speed demand
3	8	RD	Logic output signal
4	-	DIR	Logic input
5	_	NC	No connect
6	9	LSS	Low-side source connection
7	10	OUTA	Motor terminal
8	11	VBB	Input supply
9	12	OUTB	Motor terminal
10	-	NC	No connect
11	13	VBB	Input supply
12	14	OUTC	Motor terminal
13	15	LSS	Low-side source connection
14	16	VCP	Charge pump capacitor
15	1	CP2	Charge pump capacitor
16	2	CP1	Charge pump capacitor
17	_	NC	No connect
18	_	NC	No connect
19	3	VREF	Reference voltage output
20	_	NC	No connect
21	4	CTAP	Motor terminal
22	_	NC	No connect
23	5	GND	Ground
24	_	NC	No connect
_	_	PAD	Exposed pad for enhanced thermal dissipation

Three-Phase Sensorless Fan Driver IC

ELECTRICAL CHARACTERISTICS: Valid for $T_A = -40^{\circ}\text{C}$ to 105°C (G version) or $T_A = -40^{\circ}\text{C}$ to 125°C (K version), and $V_{BB} = 5$ to 16 V, unless noted otherwise

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
GENERAL				`		
VPD Complex Comment	I _{BB}	Active mode (PWM duty < DC_ON)	_	8.5	13	mA
VBB Supply Current	I _{BBS}	V _{BB} = 12 V, standby mode	_	_	100	μΑ
Reference Voltage	V _{REF}	I = 0 to 10 mA	2.75	2.85	2.95	V
POWER DRIVER						
		I _{OUT} = 1.5 A, T _J = 25°C, V _{BB} = 12 V, G Version	_	210	250	mΩ
		I _{OUT} = 1.5 A, T _J = 25°C, V _{BB} = 12 V, K Version	_	225	265	mΩ
Total Driver On-Resistance		I _{OUT} = 1.5 A, T _J = 125°C, V _{BB} = 12 V, G Version	_	300	360	mΩ
(Sink + Source) [2]	R _{DS(ON)}	I _{OUT} = 1.5 A, T _J = 125°C, V _{BB} = 12 V, K Version	_	320	380	mΩ
		Source Driver, T _J = 25°C, G Version	_	105	_	mΩ
		Sink Driver, T _J = 25°C, G Version	_	105	_	mΩ
Motor PWM Frequency	f _{PWM}		23.4	24.4	25.4	kHz
SPEED CONTROL						
PWM Input Frequency Range	f _{PWMIN}		6 [3]	_	100	kHz
Duty Cycle On Threshold	DC _{ON}	Relative to target	-0.5	_	0.5	%
Duty Cycle Off Threshold	DC _{OFF}	Relative to target	-0.5	_	0.5	%
Speed Setpoint	F _{SPD}	PWM mode	- 5	_	5	%
SPD Standby Threshold (Analog)	V _{SPDTH}	A5931KLPTR-T only	_	0.7	0.8	V
SPD On Threshold	V _{SPDON}	DC _{ON} = 10%, A5931KLPTR-T only	_	300	_	mV
SPD On Threshold	V _{SPDOFF}	DC _{OFF} = 8%, A5931KLPTR-T only	_	258	-	mV
SPD ADC Resolution	V _{SPDLSB}	A5931KLPTR-T only	_	4.82	-	mV
SPD ADC Code Offset	SPD _{OFF}	A5931KLPTR-T only	_	12	-	LSB
SPD ADC Accuracy [4]	SPD _{ACC}	V _{SPD} = 0.2 to 2.5 V, relative to equation, A5931KLPTR-T only	-20	_	20	LSB
PROTECTION CIRCUITS						
Lock Timing	t _{OFF}	Relative to target	-10	_	10	%
VBB Undervoltage Threshold	V _{BBUVLO}	V _{BB} rising	_	4.3	4.5	V
VBB Undervoltage Hysteresis	V _{BBHYS}		160	300	480	mV
Overcurrent Protection	I _{OCP}		4.2	6.5	8.5	Α
Thermal Shutdown Temperature	T _{JTSD}	Temperature increasing	150	165	180	°C
Thermal Shutdown Hysteresis	ΔT _J	Recovery = $T_{JTSD} - \Delta T_{J}$	_	20	_	°C

^[1] Specified limits are tested at a single temperature and assured over temperature range by design and characterization.

Continued on next page...

 $^{^{[2]}}$ $R_{DS(ON)}$ difference due to bond wire material, copper (G version) versus gold (K version).

^[3] Refer to description for SPD pin.

^[4] SPD Analog mode is not tested for A5931GES-T or A5931GLP-T.

Three-Phase Sensorless Fan Driver IC

ELECTRICAL CHARACTERISTICS (continued): Valid for $T_A = -40^{\circ}\text{C}$ to 105°C (G version) or $T_A = -40^{\circ}\text{C}$ to 125°C (K version), and $V_{BB} = 5$ to 16 V, unless noted otherwise

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
LOGIC/INPUT OUTPUT/I ² C			•	`		
Logic Input Low Level	V _{IL}		_	_	0.8	V
Logic Input High Level	V _{IH}		2	_	_	V
Logic Input Hysteresis	V _{HYS}		200	300	600	mV
Logic lanut Current		SPD	-10	<1	10	μΑ
Logic Input Current	I _{IN}	DIR, V_{IN} = 0 V, 100 kΩ pull-up	_	28	_	μΑ
Output Saturation Voltage (FG, RD)	V _{SAT}	I = 5 mA	-	_	0.3	V
Output Leakage (FG, RD)	Io	V = 16 V, switch OFF	_	_	5	μΑ
I ² C TIMING						
SCL Clock Frequency	f _{CLK}		3	_	400	kHz
Bus Free-Time Between Stop/Start	t _{BUF}		1.3	_	_	μs
Hold Time Start Condition	t _{HD:STA}		0.6	_	_	μs
Setup Time for Start Condition	t _{SU:STA}		0.6	_	_	μs
SCL Low Time	t _{LOW}		1.3	_	_	μs
SCL High Time	t _{HIGH}		0.6	_	_	μs
Data Setup Time	t _{SU:DAT}		100	_	_	ns
Data Hold Time	t _{HD:DAT}		0	_	900	ns
Setup Time for Stop Condition	t _{SU:STO}		0.6	_	_	ms

^[1] Specified limits are tested at a single temperature and assured over temperature range by design and characterization.

FUNCTIONAL DESCRIPTION

Basic Operation

The A5931 targets high-speed fan applications to meet the objectives of minimal vibration, high efficiency, and ability to customize the IC to the speed control specification.

In typical systems, an MCU is required to meet each application specification. The A5931 integrates the basic closed-loop speed control function, thus allowing elimination of the cost, PCB space, and programming requirements of a custom MCU.

For each specific application, the EEPROM settings can be created with the Allegro EVB and software. Contact Allegro sales to order the custom IC. (Minimum volume requirements will apply).

The speed of the fan is typically controlled by variable duty cycle PWM input. The duty cycle is measured and converted to a 9-bit number. This 9-bit "demand" is translated to a speed signal based on settings that are configured via EEPROM.

Protection features include lock detection with restart, overcurrent limit, motor output short circuit, supply undervoltage monitor, and thermal shutdown.

Standby mode can be achieved by holding SPD pin low for longer than the programmed lock off-time. In specific speed curve options, the motor will never turn off, if speed is set to run at a minimum value with 0% duty cycle applied. In this type of configuration, standby mode is not available.

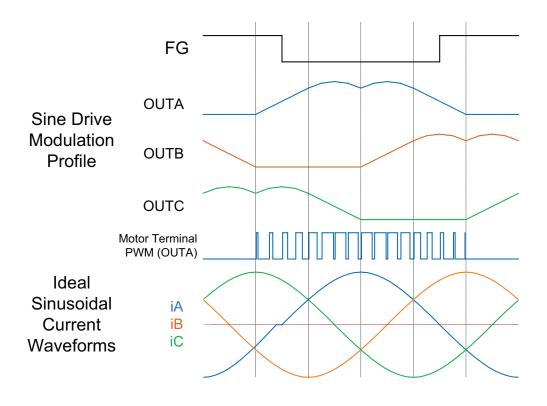


Figure 2: Sinusoidal Drive Sequence for DIR = HI

FG. Open-drain output, represents the speed of the motor for normal operation. Additionally, the FG pin serves as the data line, (SDA) for I²C communication.

The FG output signal typically represents two periods per mechanical revolution. f_{FGOUT} may not be same as electrical frequency:

$$f_{ELEC} = f_{FGOUT} \times NumberOfPolePairs / 2$$

 $f_{FGOUT} = f_{ELEC} \times 2 / NumberOfPolePairs$
 $RPM = 30 \times f_{FGOUT}$
 $RPM = f_{ELEC} \times 60 / NumberOfPolePairs$

RD. Open-drain output, logic high indicates a rotor fault condition as defined by EEPROM variables. RD function can be disabled via EEPROM. When function is disabled, RD pin goes high to indicate end of open-loop starting sequence.

SPD. Speed Demand input pin. Choice of analog voltage control or PWM duty control is determined by EEPROM selection.

Duty cycle control. The input Duty cycle signal is measured with logic circuit. The calculated output number is translated to a speed Demand signal with a resolution of 0.2%.

The maximum input PWM frequency is 100 kHz. To avoid interaction with the I²C circuitry, which share the FG and SPD inputs, the minimum PWM frequency may be limited based on the maximum frequency of the speed output pin FG.

 $f_{PWM(min)}$ is the larger number of 2.5 × $f_{FGOUT(max)}$ or 100 Hz.

 $f_{FGOUT(max)}$ is the maximum speed under all operating conditions.

Note: f_{FGOUT} (Hz) depends on selection of pole-pair in EEPROM, typically equals RPM / 30.

Analog control (A5931KLP only). Voltage applied will increase speed demand. An internal 9-bit A/D converter will translate the input to a speed demand.

$$Code = V_{IN(SPD)} / 4.82 \text{ mV} - 12 \text{ where code} = [0...511]$$

Applied Duty (%) = Code / 511.

CTAP. This analog input is an optional connection for motor common (Wye motors). It is required to insert a $2~k\Omega$ resistor in series with the pin. If not used, as in case of Delta wound motor, then pin must be left open circuit.

LOCK DETECT. A5931 will turn off for the programmed time (t_{OFF}) when the rotor is in a locked condition.

DIR (ES package only). Login input to control direction of motor. Logic "1" moves the outputs in sequence $A \rightarrow B \rightarrow C$. To reverse direction, logic "0" will sequence $A \rightarrow C \rightarrow B$. If the DIR pin changes while motor is running, the motor coasts for the programmed time, t_{LOCK} . After t_{LOCK} timeout, a normal startup sequence occurs. If motor is still moving opposite of intended direction, resynchronization logic will stop the motor before standard startup sequence.

DIR is pulled up internally with $100 \text{ k}\Omega$ resistor. To avoid any concern with PCB noise, it is recommended to connect pin to GND or VREF externally.

OCP. Overcurrent protection is intended to protect the IC from application conditions of shorted load, motor short to ground, and motor short to battery. The OCP protection monitors the drainto-source voltage (VDS) across any source or sink driver when the output is turned on. The OCP level is approximately 6.5 A. If the OCP threshold is exceeded for 640 nanoseconds, all drivers are shut off. This fault mode can be reset by PWM ON/OFF or timeout of t_{LOCK}, depending on EEPROM bit OCPOPT.

Pin shorts to GND (low inductance) on PCB should be avoided. It is possible during startup that the applied duty can be set below the blank time of the OCP circuit. For this scenario, there can be multiple pulses of high current that may overstress the IC before the OCP shutdown can occur.

OCL. An optional overcurrent limit function can be set to four different levels via EEPROM. In general, current limit should be set to a value beyond the maximum expected run current. If current limit occurs during normal operation, audible noise or motor stalling could potentially be observed. The current limit circuit monitors the VDS of the sink-side MOSFET and turns off the source driver(s) for the remainder of the PWM cycle. Current limit needs to be enabled via EEROM bit OCLD set low. If enabled, then OCL bits in the EEPROM control the level as follows:

Table 1: Overcurrent Limit

Code	I _{OCL} (A)
00	3.2
01	2.6
10	1.8
11	1

SPEED CURVE PARAMETERS

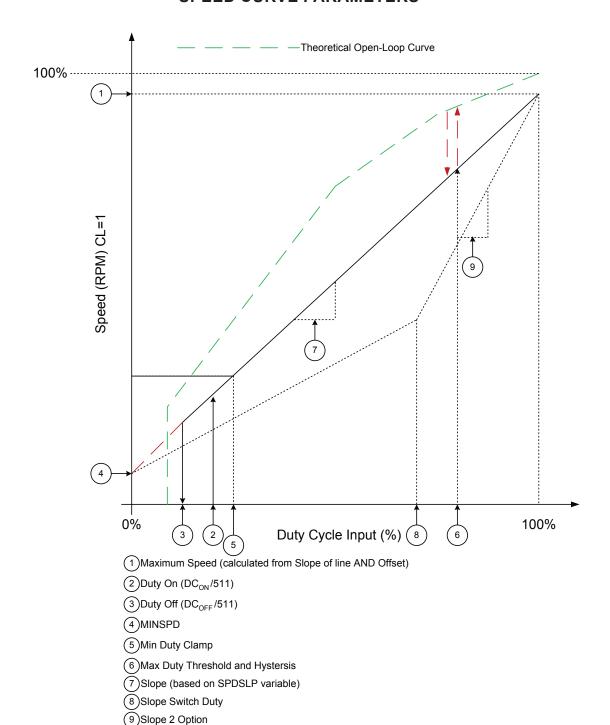


Figure 3: Speed Curve Parameters

Speed Curve Parameters (continued)

Refer to "Figure 3: Speed Curve Parameters" on page 9 for items below.

Minimum Speed Setpoint. The minimum speed is defined by the value stored in EEPROM variable MINSPD. The resolution is 1 rpm.

MINSPD (rpm) = 0..4095

Maximum Speed Setpoint. The A5931 calculates the maximum speed based on line equation y = mx + B. The maximum speed is defined as the speed with input duty = 100%.

The desired maximum speed is used to set the EEPROM variable SPDSLP1.

 $SPDSLP1 = 64 \times (Maximum\ Speed\ (rpm) - MINSPD) / 511$

Example: Max Speed = 25000, Min Speed = 3000.

 $SPDSLP1 = 64 \times 22000 / 511 = 2755$

where SPDSLP1 = 0..8192

 $Motor\ Speed\ (rpm) = Slope\ \times\ DutyIN + MINSPD.$

where Slope = SPDSLP1 \times 511 / 64 and DutyIN expressed in %.

Duty In Enable Threshold. EEPROM variable DCON defines the input duty signal that enables the drive. DCON is an 8-bit number with resolution of 0.2%, which results in a maximum setting of 49.9%.

Duty On (%) = $100 \times DCON / 511$

If DCON is set to "0", motor will turn on with 0% duty cycle input.

Duty In Disable Threshold. EEPROM variable DCOFF defines the input duty signal that disables the drive. DCOFF is an 8-bit number with resolution of 0.2%, which results in a maximum setting of 49.9%.

Duty Off(%) = DCOFF / 511

DCOFF should always be set to a lower number than DCON.

Duty Cycle Invert. To create mirror image of speed curve, set duty cycle invert bit to "1".

Minimum Duty Clamp. Minimum speed can be clamped to a value to allow motor to run at defined low-level speed. This is achieved by ignoring the duty cycle input if below the programmed MINDTY level.

Min Duty Clamp (%) = $100 \times MINDTY / 511$

Therefore the minimum speed will be defined by:

 $MinSpeedClamp(rpm) = Slope \times MinDutyClamp + MINSPD$ Setting MINDTY to 0 disables the function.

MINDTY = 0..255.

Maximum Duty Clamp. EEPROM variable DTYMAX defines a duty level at which the motor will change operation from closed-loop curve. The change of operation would depend on MAXDTYOPT setting. If MAXDTYOP = 0, open-loop operation will result. If MAXDTYOPT = 1, then operation will remain closed-loop; however, the speed will be clamped at the value calculated by DTYMAX level.

4 bits are used for this setting at resolution of 1.6% to cover the range 76.5% to 100%.

Maximum Duty (%) = $100 \times (511 - MAXDTY \times 8) / 511$

MAXDTY = 0..15; if MAXDTY = 0, then function is disabled.

Hysteresis is needed to prevent motor from going back and forth between open- and closed-loop mode.

MAXDTYHYS = 0...15.

 $Hys(\%) = (MAXDTYHYS + 1) \times 0.4$

Dual Slope Option. Two different slopes can be selected by setting variable SLPSWDTY greater than 0.

Slope2 = (MAXSPEED - SLPSWRPM) / (100% - SLPSWDTY)

Slope1 = (SLPSWRPM - MINSPEED) / SLPSWDTY

RD FUNCTION

Rotor lock output RD can be used to indicate motor is not running as expected. A high level on RD will indicate a fault.

Refer to the following four timing diagrams and Table 2 for understanding of the RD function and flexibility to adjust parameters via EEPROM.

Table 2

EEPROM Parameter	Range	Resolution	Comment
LOCKEVT	0/1		0 = RD triggered at lock event count of 2 1 = Use RDBLANK for lock events
RDHIGH (rpm)	0 to 4080	16 rpm	If set to 0; RD function disabled
RDLOW (rpm)	0 to 4080	16 rpm	Must be programmed lower than RD_high
RDDLY	0 to 15	1 second	
RDBLANK	0.1 to 25.4	100 milliseconds	
TLOCK	0.1 to 25.4	100 milliseconds	

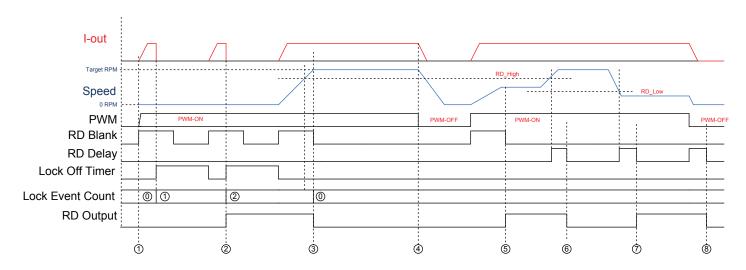


Figure 4: RD Timing Diagram (LOCKEVT = 0)

- 1. Power on with rotor locked condition
- 2. RD is high after 2nd lock event
- 3. RD resets low after RD Blank if Speed > RD_High; Lock Event Count reset to zero
- 4. PWM off RD is low since normal condition
- 5. RD is high after RD Blank if Speed < RD High
- 6. RD is low if Speed > RD High after RD Delay
- 7. RD is high if Speed < RD_Low after RD Delay
- 8. PWM off RD goes low after RD Delay low since normal condition

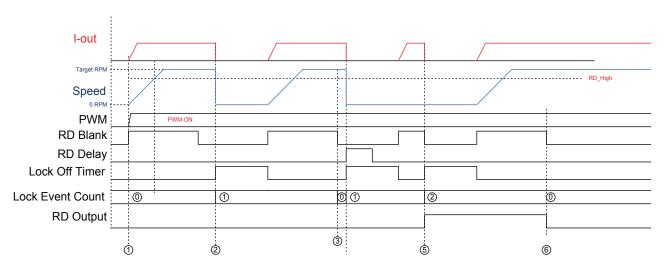


Figure 5: RD Timing Diagram (LOCKEVT = 0); lock condition while running

- 1. Power on with PWM normal startup
- 2. Rotor locked while running Lock Event Counter is one
- 3. If Speed > RD_high after RD Blank, Lock Event count reset to zero
- 4. Rotor locked while running Lock Event Counter is one
- 5. RD is high after 2nd lock event
- 6. RD reset to low after RD Blank if (Speed > RD_High); Lock Event Count reset to zero

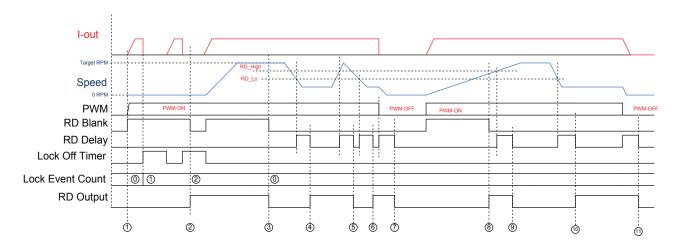


Figure 6: RD Timing Diagram (LOCKEVT = 1)

- 1. Power on with rotor locked condition
- 2. RD is high after RD Blank if Speed < RD High
- 3. RD resets low after RD Blank if Speed > RD High
- 4. RD changes to high if Speed < RD Low after RD Delay
- 5. RD changes to low if Speed > RD_High after RD Delay
- 6. RD changes to high if Speed < RD_Low after RD Delay
- 7. RD changes to low when PWM goes off after RD Delay
- 8. RD changes to high after RD Blank if Speed < RD High even if Speed > RD Low
- 9. RD changes to low if Speed > RD High after RD Delay
- 10. RD changes to high if Speed < RD Low after RD Delay
- 11. RD changes to low when PWM goes off after RD Delay

Note: RD Blank should be programmed longer than the time is take to accelerate to the RD_High level. Startup time + time to accelerate to RD_High.

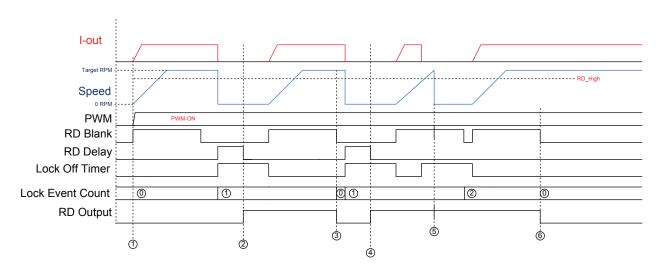


Figure 7: RD Timing Diagram (LOCKEVT = 1); lock condition while running

- 1. Power on with PWM normal startup
- 2. Rotor locked while running RD changes to high after RD Delay if Speed < RD Low
- 3. RD changes to low if Speed > RD_high after RD Blank
- 4. Rotor locked while running RD changes to high after RD Delay if Speed < RD Low
- 5. RD remains high, even if Speed is OK, since RD Blank has not timed out
- 6. RD reset to low after RD Blank if Speed > RD_High

EEPROM MAP

Table 3: EEPROM Map

ADDR	Bits	Name	Description	Default Setting	Default Value (decimal)
0	15:0	Dev1	Device information for customer use	n/a	0
	11:0	MINSPD	Range = 0 to 4095, LSB = 1 rpm	2000	2000
	12	DUTYINV	0 = normal, 1 = invert	0	0
1	13	MAXOFF	0 = normal, 1 = max speed when duty < DC_Off	0	0
	14	MAXDTYOPT	0 = run at open loop, 1 = run at MAXDTYCLP	1	1
	15	Unused			
0	13:0	SPDSLP1	Calculated slope of speed curve	set for 19909 rpm	2243
2	15:14	Unused		0	0
2	7:0	DCON	Range = 0 to 49.9%, LSB = 0.2%	10%	97
3	15:8	DCOFF	Range = 0 to 49.9%, LSB = 0.2%	7.4%	79
	3:0	MAXDTYCLP	Range = 100% to 76.5%, LSB = 1.6%	0	0
4	7:4	MAXDTYHYS	Range = 0 to 5.9%, LSB = 0.4%	0	0
4	14:8	MINDTYCLP	Range = 0 to 49.9%, LSB = 0.39%	0	0
	15	Unused			
	7:0	STRTDMD	Range = 0 to 16 V, LSB = 63 mV	945 mV	15
5	15:8	DMDPOST	Range = 0 to 100%, LSB = 0.39%	100%	255
	7:0	ALIGNT	Range = 0 to 20.4 seconds, LSB = 80 ms	480 ms	6
6	15:8	ASLOPE	Range = 160 ms to 40 seconds	511 ms	80
7	7:0	STRTF	Range = 0 to 20.4 seconds, LSB = 80 ms	2 Hz	32
7	15:8	ACCEL	Range = 0 to 99.6 Hz/s, LSB = 0.78	42 Hz/s	107
0	7:0	ACCELT	Range = 0 to 20.4 seconds, LSB = 80 ms	480 ms	6
8	15:8	RMOT	Phase to Phase Motor Resistance [1]	1.3	13
	3:0	DMDRMPAL	Range = 3.8 to 63.8 ms/count, LSB = 3.8	23.8 ms/count	5
9	7:4	DMDRMPAH	Range = 3.8 to 63.8 ms/count, LSB = 3.8	7.8 ms/count	1
9	11:8	DMDRMPDL	Range = 3.8 to 63.8 ms/count, LSB = 3.8	15.8 ms/count	3
	15:12	DMDRMPDH	Range = 3.8 to 63.8 ms/count, LSB = 3.8	15.8 ms/count	3
10	15:0	Dev2	Device information	n/a	n/a
44	7:0	MAXSPD	Maximum electrical frequency	1061 Hz	23
11	15:8	TLOCK	Range = 0 to 25.5 seconds	5 seconds	50
40	7:0	RDLOW	Range = 0 to 4095, LSB = 16 rpm	0	0
12	15:8	RDHIGH	Range = 0 to 4095, LSB = 16 rpm	0	0
40	7:0	RDBLANK	Range = 0 to 25.5 seconds, LSB = 100 ms	0	0
13	12:8	RDDLY	Range = 0 to 15 seconds, LSB = 1 second	0	0
4.4	11:0	PHASLP	Calculated slope for linear phase advance	set for 11°@20000 rpm	367
14	15:12	SOWLIN	Window width with linear phase advance	28°	15

^[1] RMOT is for GUI use; it does not change operation of the IC

Continued on next page...

EEPROM MAP (continued)

ADDR	Bits	Name	Description	Default Setting	Default Value (decimal)
	0	PCDLY	Post-coast delay: 0 = 100 ms, 1 = 500 ms	500 ms	1
	1	STBYDIS	Standby Mode: 0 = Enable, 1 = Disable	0	0
	3:2	PWMF	Motor PWM selection	24 or 48 kHz	2
	5:4	BEMFFILT	Bemf Comparator filter	4 µs	0
15	6	TCENB	Temperature compensation: 0 = Off, 1 = On	0	0
	8:7	WINDM	Windmill option	0	0
	12:9	SPDCLP	Minimum clamp is speed control mode	4.6%	2
	14:13	OCL	Set overcurrent limit level	0	0
	15	OCLD	1 = disable overcurrent limit	0	0
	0	CL	Speed Control Mode: 0 = open loop, 1 = closed	enabled	1
	1	PHA	Running Mode: 0 = auto, 1 = linear phase advance	0	0
	2	LOCKEVT	RD function mode select	0	0
	3	SPDSEL	Speed control select: 0 = PWM duty, 1 = analog	0	0
	6:4	PP	Pole pair = PP + 1	2 pp	1
40	7	NOCOAST	1 = no coast, 0 = coast	1	1
16	8	ALIGNMODE	0 = align, 1 = one cycle	one cycle	1
	10:9	QCKSTRT	0 = disable, 1 = enable	0	0
	11	FGSTRT	0 = FG disabled during startup, 1 = FG enabled	0	0
	13:12	BEMFHYS	BEMF hysteresis level for startup	40 mV	1
	14	SOWAUTO	Initial value of window	21°	1
	15	OCPOPT	0 = reset after TLOCK, 1 = after PWM on/off	TLOCK	0
47	7:0	KP	Closed loop	16	16
17	15:8	KI	Closed loop	2	2
40	7:0	SLPSWDTY	Duty at which slope changes	0	0
18	15:8	Unused			
19	14:0	SLPSWRPM	Range 0 to 16384, LSB = 1 rpm	2000 rpm	2000
19	15	Unused			
20	13:0	SPDSLP2	Calculated slope	0	0
20	15:14	Unused			
21	15:0	Allegro	Allegro use only	n/a	
22	15:0	Dev3	Device information	n/a	
23	15:0	Allegro	Allegro use only	n/a	

SERIAL PORT CONTROL OPTION

Normally the IC is controlled by duty cycle input and uses the EEPROM data that is stored to create the speed curve profile. However, it is possible to use direct serial port control to avoid programming EEPROM.

When using direct control, the input duty cycle command is replaced by writing a 9-bit number to register 165.

Example:

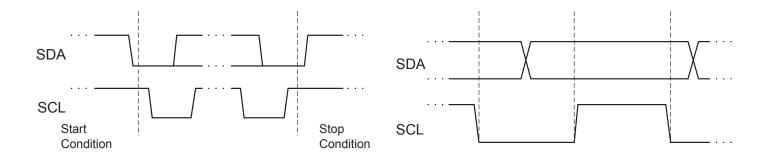
REGADDR[data]: (in decimal)

$$165[511] \rightarrow \text{Duty} = 100\%$$

$$165[102] \rightarrow \text{Duty} = 102 / 511 = 20\%$$

Upon power up, the IC defaults to duty cycle input mode. To use serial port mode, the internal registers should be programmed before turning the part on. The sequence to use serial port mode is:

- 1. Drive FG and SPD pins low*
- 2. Power-up IC
- 3. Program registers for parameter setting that correspond to each of the EEPROM memory locations.
 - A. REGADDR = 64 + EEPROM ADDR.
 - B. Program register addresses 65 to 84 corresponding to EEPROM addresses 1 to 20.
 - C. It may be helpful to use the GUI text file to help define the hex data for each of the EEPROM addresses.
- 4. Write to register 165 to start motor
- * Note: If SPD is not driven low before power up, motor will try to start immediately as the default high value will demand 100% on signal.



Serial Port

The A5931 uses standard fast mode I²C serial port format to program the EEPROM or to control the IC speed serially. The SPD pin functions as the clock (SCL) input, and the FG pin is the data line (SDA). No special sequence is needed to begin transferring data. If the motor is running, the FG may then pull the data line low while trying to initialize into serial port mode. Once an I²C command is sent, the SPD input is ignored, and the motor will turn off as if a PWM duty command of 0% was sent.

The A5931 7-bit slave address is 0x55.

I²C Timing Diagrams

Figure 8: Start and Stop Conditions

Figure 9: Clock and Data Bit Synchronization

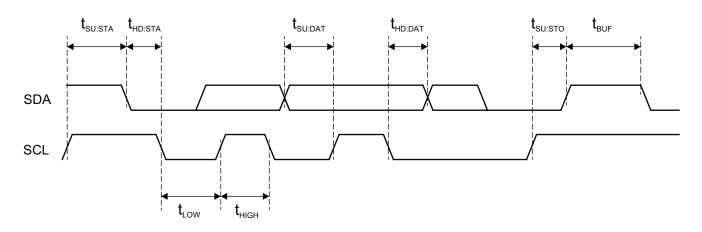


Figure 10: I²C-Compatible Timing Requirements

Write Command

- 1. Start Condition
- 2. 7-bit I²C Slave Address (Device ID) 1010101, R/W Bit = 0
- 3. Internal Register Address
- 4. 2 data bytes, MSB first
- 5. Stop Condition

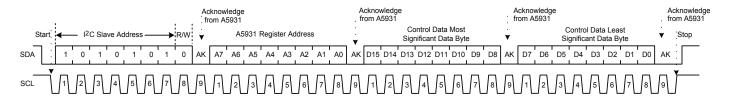


Figure 11: Write Command

Read Command

- 1. Start Condition
- 2. 7-bit I²C Slave Address (Device ID) 1010101, R/W Bit = 0
- 3. Internal Register Address to be read
- 4. Stop Condition
- 5. Start Condition
- 6. 7-bit I²C Slave Address (Device ID) 1010101, R/W Bit = 1
- 7. Read 2 data bytes
- 8. Stop Condition

Figure 12: Read Command

Programming EEPROM

The A5931 contains 24 words of 16-bit length. The EEPROM is controlled with the following I²C registers. Refer to application note for EEPROM definition.

Table 4: EEPROM Control – Register 161 (Used to control programming of EEPROM)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	RD	WR	ER	EN

Bit	Name	Description
0	EN	Set EEPROM voltage required for writing or erasing
1	ER	Sets mode to erase
2	WR	Sets mode to write
3	RD	Sets mode to read
15:4	n/a	Do not use; always set to zero during programming process

Table 5: EEPROM Address - Register 162 (Used to set the EEPROM address to be altered)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	eeADDRESS				

Bit	Name	Description
4:0	eeADDRESS	Used to specify EEPROM address to be changed.
15:5	n/a	Do not use; always set to zero during programming process

Table 6: EEPROM Dataln - Register 163 (Used to set the EEPROM new data to be programmed)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	eeDATAin														

Bit	Name	Description
15:0	eeDATAin	Used to specify the new EEPROM data to be changed

Three-Phase Sensorless Fan Driver IC

Table 7: DataOUT - Register 164 (Used for read operations)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	eeDATAout														

Bit	Name	Description
15:0	eeDATAout	Used to readback EEPROM data from address defined in register 162

There are 3 basic commands: Read, Erase, and Write. To change the contents of a memory location, the word must be first erased. The EEPROM programming process (writing or erasing) takes 10 ms per word.

Each word must be written individually.

Example #1: Write EEPROM address 5 to 261 (0x0105)

1) Erase the word

I²C Write REGADDR[Data] ; comment

a. 162[5] ; set EEPROM address to erase

b. 163[0] ; set 0000 as Data In

c. 161[3] ; set control to Erase and trigger high-voltage pulse

d. Wait 15 ms ; wait for pulse to end

e. 161[0] ; clear voltage

2) Write the new data

a. 162[5] ; set EEPROM address to write

b. 163[261] ; set Data In = 261

c. 161[5] ; set control to Write and trigger high-voltage pulse

d. Wait 15 ms ; wait for pulse to end

e. 161[5] ; clear voltage

Example #2: Read EEPROM address 5 to confirm correct data properly programmed

1) Read the word

a. $5[I^2C \text{ Read}]$; read register 5; this will be the contents of EEPROM

FG Out Reror Duty In Reror R

APPLICATION INFORMATION

Figure 13: Typical Application Circuit

Table 8: Typical Application Components

Name	Suggested Value	Comment
C _{VREF}	0.1 μF/X5R/10 V	Ceramic capacitor required
C _{VBB}	10 to 100 μF	Power supply stabilization – electrolytic or ceramic OK.
C _{VCP}	0.1 μF	Ceramic capacitor required
C _{CP}	0.1 μF	Ceramic capacitor required
D1	Not installed	May be required to isolate motor from system or for reverse polarity protection
ZD1	SMBJ14A	TVS to limit max V _{BB} due to transients due to motor generation on power line. Suggested to clamp below 16 V.
R _{CTAP}	2 kΩ	2 kΩ series resistance; not required if pin left O/C
R _{FG}	500 Ω	Optional – If FG wired to connector – R _{FG} will isolate IC pin from noise or overvoltage transients or protect from connector issues
R _{FGPU}	10 kΩ	Open-drain pull-up resistor – required if using pin for I ² C
R _{SPD}	500 Ω	Optional – If PWM wired to connector – R _{SPD} will isolate IC pin from noise or overvoltage transients or protect from connector issues
R _{SPDPU}	10 kΩ	Open-drain pull-up resistor – required if using pin for I ² C
R _{RD}	10 kΩ	Open-drain pull-up resistor – optional for RD function or test use

Layout Notes:

- 1. Add thermal vias to exposed pad area.
- 2. Add ground plane on top and bottom of PCB.
- 3. Place C_{VREF} and C_{VBB} as close as possible to IC, connected to GND plane.

PIN DIAGRAMS

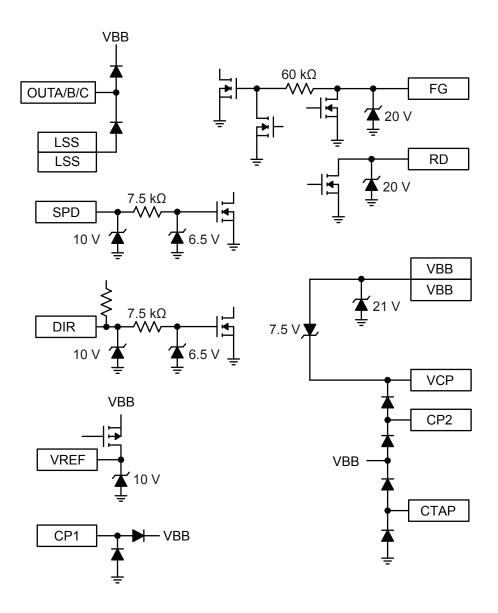


Figure 14: Pin Diagrams

PACKAGE OUTLINE DRAWING

For Reference Only – Not for Tooling Use (Reference Allegro DWG-0000222 Rev. 4 or JEDEC MO-220WGGD.) Dimensions in millimeters - NOT TO SCALE. Exact case and lead configuration at supplier discretion within limits shown.

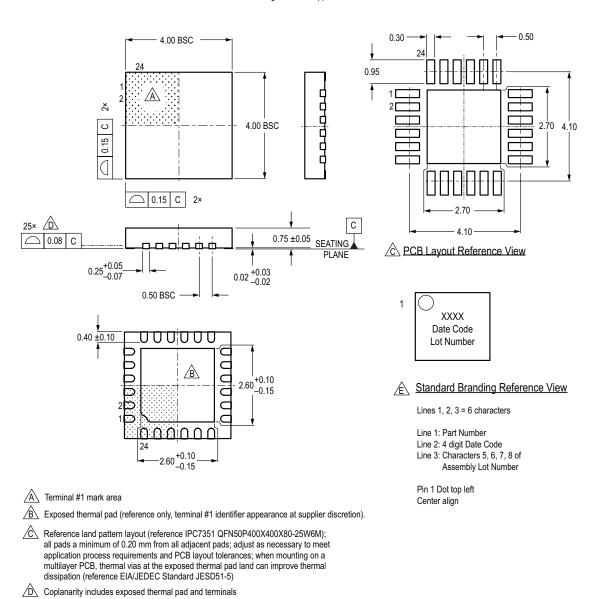


Figure 15: Package ES, 24-Contact QFN with Exposed Pad

Branding scale and appearance at supplier discretion.

For Reference Only – Not for Tooling Use (Reference JEDEC MO-153 ABT; Allegro DWG-0000379, Rev. 3)

(Reference JEDEC MO-153 ÅBT; Allegro DWG-0000379, Rev. 3)
Dimensions in millimeters – NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

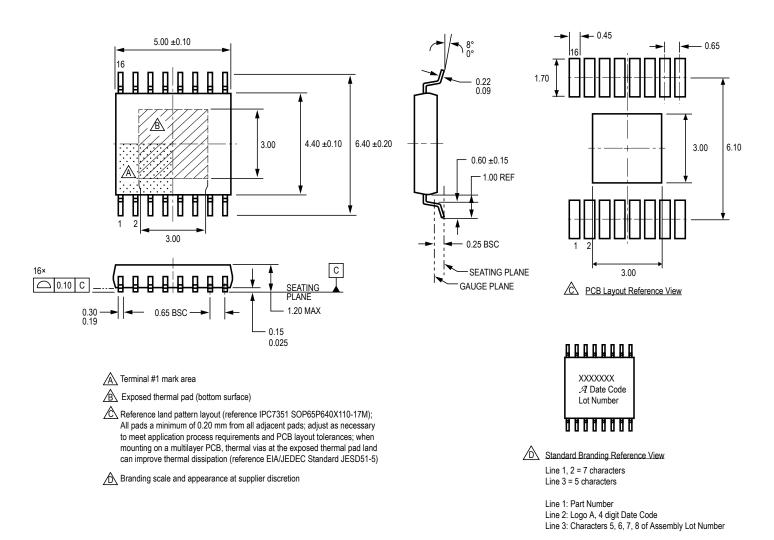


Figure 16: Package LP, 16-Lead TSSOP with Exposed Pad

Three-Phase Sensorless Fan Driver IC

Revision History

Number	Date	Description
_	September 20, 2016	Initial release
1	February 10, 2017	Corrected Figure 1: Typical Application (page 1); added K temperature range option (page 2).
2	April 24, 2017	Corrected Logic Input Low Level and Logic Input High Level (page 6).
3	May 10, 2017	Updated Overcurrent Protection typical and maximum values (page 5), EEPROM map (page 16), and Table 5 (page 20).
4	June 14, 2017	Updated Total Driver On-Resistance for K version (page 5).
5	September 28, 2018	Minor editorial updates
6	October 29, 2018	Updated PWM Duty Input min value (page 5), FG and SPD functional description sections (page 8)
7	November 15, 2018	Updated PWM Input Frequency Range (page 5), SPD and DIR functional description sections (page 8)
8	July 25, 2019	Minor editorial updates; initial release to web
9	November 29, 2021	Updated Speed Control test conditions (page 5), Analog Control (page 8), and package drawings (pages 24-25)

Copyright 2021, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

