
AN296160, Rev. 1
MCO-0000476

July 26, 2019

Application Information

Microcontroller-Based Linearization of Angular Sensor ICs

By Dominik Geisler,
Allegro MicroSystems

Introduction
Magnetic angle sensors are often a good choice for fast,
reliable, contactless measurement of the angular position
of a system, especially in dirty environments where optical
encoders may not be a good fit.

Allegro MicroSystems offers a wide range of angular sensor
ICs [1] for different applications. These sensor ICs can measure
the angle of diametrically magnetized encoder magnets in a
side-shaft or end-of-shaft setup, as shown in Figure 1.

N
S

Figure 1: Side-shaft measurement angle (left) and
end-of-shaft angle measurement (right)

Measurement Errors
All Allegro angle sensor ICs are calibrated at final test in the
factory using a homogenous magnetic field. This is done to
minimize the native error of the sensor. However, especially
in side-shaft applications, the magnetic field angle at the
sensor transducer is not identical to the mechanical angle of
the shaft that is to be measured. The main contributor to this
difference is the shape of the magnetic field emitted from
the encoder magnet.

Other sources of mismatch between mechanical and mag-
netic field angle are magnet misalignment, magnet imper-
fections, remaining sensor inaccuracy and drift, and the
presence of ferromagnetic materials.

It can be concluded that all systems, and especially side-
shaft-systems, suffer from a mismatch between the encoder
angle and the measured angle. A typical transfer curve for a
side-shaft application can be seen in Figure 2.

-180 -90 0 90 180

Encoder Angle (degrees)

-180

-90

0

90

180

Se
ns

or
 R

ea
di

ng
 (d

eg
re

es
)

Sensor Output

Figure 2: Simulated sensor reading vs. encoder
angle in a side-shaft setup

These measurement errors are called nonlinearities and can
be compensated through a process called linearization.

Linearization
Some Allegro sensor ICs, such as the A1335, the AAS33001,
and the AAS33051 have embedded logic that allows for the
linearization of input data. However, other sensor ICs, such as
the A1330, A1333, A1337, A1338, or A1339, do not have this
functionality on chip. In cases where a sensor IC without the
built-in functionality to linearize the data is used, external lin-
earization using a microcontroller may be required to achieve
the required accuracy in a particular application.

This application note will:

• Explain the fundamentals of linearization

• Show how to process real measured data to calculate
correction data

• Detail three ways of storing the correction data

• Detail how to apply the correction

• Compare the accuracy of the proposed methods
[1] Allegro Angle Position Sensor ICs, https://www.allegromicro.com/en/Products/Magnetic-

Linear-And-Angular-Position-Sensor-ICs/Angular-Position-Sensor-ICs.aspx

https://www.allegromicro.com/en/Products/Magnetic-Linear-And-Angular-Position-Sensor-ICs/Angular-Position-Sensor-ICs.aspx
https://www.allegromicro.com/en/Products/Magnetic-Linear-And-Angular-Position-Sensor-ICs/Angular-Position-Sensor-ICs.aspx

2
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Definitions
Encoder Angle

The angle reported by an accurate, high-resolution external
encoder.

Sensor Angle

The angle reported by the angle sensor IC.

Angle Error

Angle error is the difference between the actual position of the
magnet and the position of the magnet as measured by the angle
sensor IC. This is calculated by subtracting the encoder angle
from the sensor angle:

error = (α_sensor – α_encoder) .
However, if the sensor angle is 359° and the encoder angle is 0°,
the error should be –1° and not +359°. To wrap around any error
outside of ±180°, the modulo operator can be used:

error = mod[(α_sensor – α_encoder) + 180,360] – 180.
A sample plot of the angle error in a side-shaft application is
given in Figure 3.

Maximum Absolute Angle Error

The maximum absolute angle error is the largest absolute differ-
ence between the actual position of the magnet and the position
of the magnet as measured by the angle sensor IC over a full rota-
tion. In Figure 3, the maximum angle error is 21.46°, measured at
an encoder angle of 56°.

-180 -90 0 90 180
-180

-90

0

90

180

Se
ns

or
 R

ea
di

ng
 (d

eg
re

es
)

Sensor Output

-180 -90 0 90 180

Encoder Angle (degrees)

-20

-10

0

10

20

A
ng

le
 E

rr
or

 (d
eg

re
es

)
Angle Error

X: 56
Y: -21.46

X: 56
Y: 34.54

Figure 3: Angle error compared to sensor output plot

3
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Goal of Linearization
The goal of linearization is to determine, store, and apply a func-
tion that minimizes the measured sensor angle error as com-
pared to the encoder angle value. This minimizes the difference
between measured sensor angle and actual encoder angle.

Encoder (Real) Angle

Se
ns

or
 (M

ea
su

re
d)

 A
ng

le

Figure 4: The goal of linearization: getting from sensor
angle to encoder angle

This goal can be achieved in different ways. Three common tech-
niques will be detailed in this applications note.

The techniques presented depend on a single calibration phase
(typically performed at the customer’s end-of-line test), after
which a fixed correction function is applied.

Prerequisites to Linearization
Prerequisites to linearization using the techniques detailed here
are the following:

• During production, known angles need to be applied to the
sensor system.

• During production, sensor angles need to be read out.
• The system to be linearized needs a microcontroller, to which

linearization information is written during the production
process and which performs linearization in the application.

Limits to Linearization
Linearization using the methods described here has some limits:

• Sensor noise will not be corrected by linearization.
• Any drift of the sensor after calibration will not be corrected.
• Changes in the mechanical system after calibration will not

be corrected by linearization. A common example is dynamic
change of magnet position due to vibrations and torque.

• If the input positions during the calibration are not accurately
recorded, the accuracy of the correction will be limited in the
same way.

4
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Linearization Method
1. Data Recording

To generate the data needed for linearization, measure sensor out-
put [y0 … yn] at known encoder angles [x0 … xn]. These encoder
angles do not need to be equidistant, although it is common to use
equidistant angles.

The recording of values is shown in Figure 5.

Encoder (Real) Angle

Se
ns

or
 (M

ea
su

re
d)

 A
ng

le

x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

Figure 5: Data recording

2. Coordinate Transformation to Sensor Angle

As the correction function has to work based on the sensor data,
the recorded data points should be transformed into the sensor
coordinate system. This means that instead of expressing the
sensor angle as function of the real angle, it is required to express
the real angle as function of the sensor angle. Therefore, sensor
angles [y'0 … y'n] are chosen, for which corresponding encoder
angles [x'0 … x'n] need to be determined. To do this, a fit needs
to be applied through the data points. This can be done through
spline interpolation, as shown in Figure 6.

Encoder (Real) Angle

Se
ns

or
 (M

ea
su

re
d)

 A
ng

le
x'1 x'2 x'3 x'4 x'5

y'1

y'2

y'3

y'5

y'4

Figure 6: Coordinate transformation into sensor angles

5
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

3. Correction Curve Calculation

In order to create a function that converts the angle measured at
the sensor into the encoder angle, correction values need to be
calculated. These correction values are calculated as [c0 … cn] =
[x'0 … x'n] – [y'0 … y'n].

Encoder (Real) Angle

Se
ns

or
 (M

ea
su

re
d)

 A
ng

le

y'1

y'2

y'3

y'5

y'4

c1 c2 c3 c4 c5=0

Figure 7: Correction value calculation
In the end, these values describe a correction curve, c, which
gives the correction values as a function of the sensor angle. Fig-
ure 8 shows a plot of the curve c over sensor angle.

c1

c2 c3

c4 c5c0

y'0 y'1 y'2 y'3 y'4 y'5

Figure 8: Correction curve

4. Correction Curve Application to Data

To apply the correction to a measured sensor data point, a cor-
rection value C for sensor data point Y needs to be calculated
based on the correction curve c. This is graphically represented in
Figure 9.

C

Y

Figure 9: Finding value C = f(Y) on correction curve c
The correct angle value X is then determined as X = Y + C. This
is graphically represented in Figure 10.

Encoder (Real) Angle

Se
ns

or
 (M

ea
su

re
d)

 A
ng

le

Y

X = Y + C

C C
Y

Figure 10: Finding value X = Y + C using
the correction curve

6
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Correction Curve Storage Options
In this document, three ways to store the correction curve will be
investigated. There are numerous other possibilities. However,
the methods presented here service a wide range of needs while
requiring modest implementation and calculation efforts. Of these
methods, linear interpolation is hardware-implemented in the
A1335, the AAS33001, and the AAS33051. Harmonic correction
is implemented only in the A1335.

Harmonic Correction

The correction curve often has a periodic shape. By dissecting it
into harmonics and storing the phase and amplitude of the har-
monics, a compact storage is possible. This is clearly the case, for
example, in Figure 3.

The advantage of harmonic correction is that only very few
parameters need to be stored to correct the sensor data. The
disadvantage is that the microcontroller needs to perform cosine
calculation, which limits the speed.

Linear Interpolation

As a second method, it is possible to approximate the correction
curve using a piecewise linear function.

This method requires more storage parameters to be used than
harmonic correction, but takes less calculation time. The code
size for the calculation method is also smaller.

Lookup Table

The third method to store the correction curve is to use a lookup
table. This requires a large table in which the correction param-
eters are stored, but since the correction value can be taken
directly from the lookup table, no interpolation steps are needed.
This keeps the linearization code very simple and fast.

Correction Method Comparison

Figure 11 and Figure 12 show a comparison between the
expected outputs obtained from the data in Figure 3 when the cor-
rection curve is stored as a harmonic approximation, piecewise
linear interpolation, and lookup table.

0 45 90 135 180 225 270 315 360

Measured Angle (degrees)

-15

-10

-5

0

5

10

15

A
ng

le
 C

or
re

ct
io

n
A

pp
lie

d
(d

eg
re

es
)

Correction Curve Approximations

Harmonic (≤4th harmonic)

Piecewise Linear (16 segments)

Lookup Table (32 entries)
Ideal Correction Curve

Figure 11: Correction curve (black) and
three approximation methods

105 120 135 150 165 180

Measured Angle (degrees)

3

4

5

6

7

8

9

10

A
ng

le
 C

or
re

ct
io

n
A

pp
lie

d
(d

eg
re

es
)

Correction Curve Approximations

Harmonic (≤4th harmonic)

Piecewise Linear (16 segments)

Look-up table (32 entries)
Ideal Correction Curve

Figure 12: Magnification of Figure 11
to highlight the differences

7
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Correction Curve Determination
The implementations in this document were implemented in
MathWorks MATLAB™. As this is commercial software, licens-
ing costs apply to using it, which may hinder use in production
environments. A free software alternative to MATLAB is GNU
Octave, which is available under the GNU GPLv3 license free of
charge.

All functions used in this document are supported by both MAT-
LAB and GNU Octave.

In these scripts, it is assumed that the sensor angle increases with
increasing encoder angle. If this is not the case, the sensor angles
must be inverted before proceeding with the other processing steps.

Sensor Output Capture

Initial data on the sensor angular output must be captured by
the user. This is done by setting certain known angles, referred
to as encoder angles in this document. Then the sensor angles
are recorded. The sensor angles are the angles measured by the
sensor. The number of points recorded can be more or less than
the number of linear correction points. Recording more points, if
possible, is always better.

In general, recording at least 16 data points is enough for good
correction performance in on-axis situations. In off-axis situa-
tions, at least 32 points are recommended.

To apply piecewise linear correction with n segments (e.g. 32),
recording at least n points will make good use of the available
correction points. Recording about 2 × n points results in a nearly
ideal performance. A real-life example of recorded points is given
in Table 1.

Table 1: Recorded encoder and output angles
Encoder
Angle (°)

Output
Angle (°)

Encoder
Angle (°)

Output
Angle (°)

0.00 266.31 180.00 97.12

11.25 278.61 191.25 111.45

22.50 290.39 202.50 124.98

33.75 301.99 213.75 137.46

45.00 312.45 225.00 148.62

56.25 323.00 236.25 158.82

67.50 332.75 247.50 167.96

78.75 342.69 258.75 176.48

90.00 352.79 270.00 184.48

101.25 3.16 281.25 192.92

112.50 14.24 292.50 201.27

123.75 26.02 303.75 210.50

135.00 38.94 315.00 220.43

146.25 52.91 326.25 230.98

157.50 67.15 337.50 242.31

168.75 82.18 348.75 254.36

0 45 90 135 180 225 270 315 360

Encoder Angle (degrees)

0

45

90

135

180

225

270

315

360

O
ut

pu
t A

ng
le

 (d
eg

re
es

)

Output Field Direction Over Encoder Direction

Figure 13: Plot of data from Table 1

8
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Sensor Output Overflow Removal

The jump in the sensor data around 100° input angle will cause
difficulties in the next processing steps. It is removed by adding
360° to all values after the jump into negative direction. Also,
the mean value of the data should be within ±180° to avoid other
issues in later processing. This is achieved by the following lines:

%% preprocessing
sensor_data_2 = sensor_data(:);
angle_input = angle_input(:);

% check if rising continuously with at most one overflow
if any(diff(sensor_data_2) == 0)
 error('sensor data must be monotonously increasing')
elseif sum(diff(sensor_data_2) < 0) <= 1
 % rising angle data with zero or one overflow, overflow will be corrected
 sensor_data_2 = sensor_data_2(:) + 360*cumsum([false; diff(sensor_
data_2(:)) < 0]);
elseif sum(diff(sensor_data_2) < 0) > 1
 error('only one data decrease permitted as overflow')
end

% correctly wrap around sensor data
rollovercorrection = round((mean(sensor_data_2) - 180)/360) * 360;
sensor_data_2 = sensor_data_2 - rollovercorrection;

The resulting values are shown in Table 2.

Table 2: Encoder and output angles after removing overflow
Encoder
Angle (°)

Output
Angle (°)

Encoder
Angle (°)

Output
Angle (°)

0.00 –93.69 180.00 97.12

11.25 –81.39 191.25 111.45

22.50 –69.61 202.50 124.98

33.75 –58.01 213.75 137.46

45.00 –47.55 225.00 148.62

56.25 –37.00 236.25 158.82

67.50 –27.25 247.50 167.96

78.75 –17.31 258.75 176.48

90.00 –7.21 270.00 184.48

101.25 3.16 281.25 192.92

112.50 14.24 292.50 201.27

123.75 26.02 303.75 210.50

135.00 38.94 315.00 220.43

146.25 52.91 326.25 230.98

157.50 67.15 337.50 242.31

168.75 82.18 348.75 254.36

0 45 90 135 180 225 270 315 360

Encoder Angle (degrees)

-90

-45

0

45

90

135

180

225

270

O
ut

pu
t A

ng
le

 (d
eg

re
es

)

Output Field Direction Over Encoder Direction

Figure 14: Plot of data from Table 2

9
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Data Replication

Eventually, correction data based on the sensor angles from 0° to
360° are needed. To avoid any edge effects, the sensor data will
be replicated three times. This avoids edge effects in all cases
by giving the possibility to always safely extract the values from
sensor angle 360° to 720°.

%extend sensor data
sensor_data_ext = [sensor_data_2(:); sensor_data_2(:)+360; ...
 sensor_data_2(:)+720];

%extend input data
angle_input_ext = [angle_input(:); angle_input(:)+360; ...

 angle_input(:)+720];

Projection onto Sensor Data Grid

In the next step, the encoder angle inputs corresponding to
sensor outputs between 360° and 720° are calculated (called
“intermediategrid” in the code below). This is done with
4096 steps, as a high resolution for this intermediate step benefits
the final output quality.

%% use spline to move the data from an ordered input grid
% onto an ordered output grid:
ordered_output_grid = 0:(360/4096):(360-360/4096);
intermediategrid = ordered_output_grid + 360;
projection = spline(sensor_data_ext, angle_input_ext, ...
 intermediategrid);

This step is graphically illustrated in Figure 15.

0 180 360 540 720 900 1080

Encoder Angle (degrees)

-180

0

180

360

540

720

900

O
ut

pu
t A

ng
le

 (d
eg

re
es

)

Output Field Direction Over Encoder Direction

in
te

rm
ed

ia
te

gr
id

Figure 15: Finding the encoder angle (“projection”) as
projection of a fixed-grid sensor angle (“intermediategrid”)

The difference between the angle encoder values and the sensor
outputs is the correction curve and can be calculated by subtract-
ing the fixed-grid sensor angles from the calculated matching
encoder angles.

% calculate the required correction of the data:
correction_curve = projection - intermediategrid;
correction_curve = correction_curve(:);

The correction curve can be seen below in Figure 16.

0 45 90 135 180 225 270 315 360

Sensor Angle (degrees)

75

80

85

90

95

100

C
or

re
ct

io
n

Va
lu

e
(d

eg
re

es
)

Correction Value Over Sensor Angle

X: 137.5
Y: 76.29

Figure 16: Correction curve for our example
A brief check can be done to see that this curve is correct. In
Table 1, it can be seen that for the sensor angle of 137.46°, the
encoder angle is 213.75°. The correction curve of Figure 16
shows that at a sensor angle of 137.5°, a correction of +76.29°
needs to be applied. As 137.46 + 76.26 = 213.72° ≅ 213.75°, the
correction curve calculated is applicable.

At the next step, the correction curve needs to be stored in an effi-
cient way, so that the correction value can be calculated for any
input. This will be done using harmonic approximation, linear
interpolation, and a lookup table.

10
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Harmonic Approximation
Concept

Each repeating signal can be divided into its constituting frequen-
cies. The correction curve is repeated after every rotation, so that
it can be completely described as a set of frequencies. Repeating
the correction curve may make it clearer that various frequencies
are contained in the correction curve.

Figure 17: The repeated correction curve
contains various frequencies

An advantage of the harmonic approximation is that the correc-
tion curve can be described with acceptable accuracy using only
a few parameters. However, the calculation of cosine may be too
slow for some platforms or applications.

Implementation

Using a Fourier transform, the phase and amplitude for each com-
posing frequency of the correction curve can be determined. The
4096 data points of the correction curve lead to a 4096-point FFT
result. However, most energy is in the lower frequencies. Below,
only the offset value and the first 16 harmonics of the correction
curve are extracted:

%% Fourier transform the correction, discarding the values after the 16th
% and scaling energy by length of the table
fft_table = fft(correction_curve)/length(intermediategrid);
offset_correction = abs(fft_table(1));
correction_pha = angle(fft_table(2:17));
correction_amp = 2*abs(fft_table(2:17));

This yields an offset correction of 89.82°, and the following
amplitudes of the harmonics:

0 2 4 6 8 10 12 14 16

Harmonic Number

0

2

4

6

8

10

A
m

pl
itu

de
 (d

eg
re

es
)

Amplitude of Individual Harmonics

Figure 18: Amplitude for the first 16 harmonics
of the correction curve

The complete result table up to the 16th harmonic is found below:
Table 3: Harmonics amplitude and phase data

Harmonic Amplitude (°) Phase (radians)

1 8.15 0.666

2 5.38 –1.399

3 1.08 0.924

4 0.42 –1.439

5 0.20 1.229

6 0.09 –1.963

7 0.04 2.274

8 0.03 –2.538

9 0.04 1.277

10 0.01 1.239

11 0.02 –2.004

12 0.02 –0.553

13 0.04 –2.482

14 0.04 –0.921

15 0.02 0.117

16 0.03 0.227

Application

The correction value for the nth harmonic at a specific angle can
be found as:

corr(n) = correction_amp(n)
× cos[n × sensor_angle + correction_pha(n)],

where the 0th harmonic is offset correction and should be taken
into account as well. Practically applied, the following code
results in four harmonics. As the cosine function expects radians
as input, the angle values are converted to radians. The correction
amplitude stored in the table is in degrees, since the input to the
Fourier transform was in degrees.

%% apply harmonic correction for four harmonics
restored_signal_4_harmonics = mod(sensor_data + (...
 offset_correction + ...
 correction_amp(1)*cos(1*(sensor_data/360*2*pi) + correction_pha(1)) + ...
 correction_amp(2)*cos(2*(sensor_data/360*2*pi) + correction_pha(2)) + ...
 correction_amp(3)*cos(3*(sensor_data/360*2*pi) + correction_pha(3)) + ...
 correction_amp(4)*cos(4*(sensor_data/360*2*pi) + correction_pha(4)) ...
),360);

This code performs the correction for all the sensor angles in
sensor_data.

Implementation of this correction in a loop will reduce code size
for microcontroller implementations, but was not used here for
code clarity reasons.

Figure 19 shows the remaining output inaccuracy after lineariza-
tion over the 16 recorded angles from Table 1. The remaining
error decreases by adding more harmonics. When choosing which

11
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

harmonic to compensate, it is best to choose the harmonics in
order of decreasing amplitude. For example, if harmonic 1, 2, and
4 have a large amplitude, while harmonic 3 has a smaller ampli-
tude, then correcting harmonic 1, 2, and 4 will give a better result
than correcting harmonic 1, 2 and 3.

0 50 100 150 200 250 300 350

Encoder Angle (degrees)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
em

ai
ni

ng
 O

ut
pu

t E
rr

or
 A

fte
r L

in
ea

riz
at

io
n

(d
eg

re
es

)

2 harmonics

3 harmonics

4 harmonics

5 harmonics

6 harmonics

Figure 19: Remaining angle error after linearization
with an increasing amount of harmonics

for the example in this document
Linear Interpolation
Concept

The correction curve can be approximated by a piecewise linear
function. For this function, it is required to store support points as
pairs of sensor coordinates and correction values.

In Figure 8, these pairs would be [(y'0, c0,) … (y'n, cn)].

Between the support points, linear interpolation is performed.

In angle sensor linearization applications, it is useful to use an
equidistant grid of sensor angles. In this way, the sensor angle
values [y'0 … y'n] do not need to be stored, and the implementa-
tion of the linear correction becomes easier. For example, it is
possible to store 32 correction values, which will then be applied
at sensor angles of 0°, 11.25°, 22.50°, etc.

The points to be stored can be determined by different criteria.
The simplest way to determine them is by choosing points on the
correction curve at said sensor angles, which will be referred to as
“on-curve” linear interpolation. However, the points can also be
optimized for a least-squares error of the stored correction curve.

This will be referred to as “least-squares” linear interpolation.

Other optimization strategies are possible, but will not be
described in this document.

The difference between on-curve and least-squares correction
parameters for the curve from this example is seen in Figure 20.

0 5 10 15 20 25 30

Measured Angle (degrees)

7.4

7.6

7.8

8

8.2

8.4

8.6

A
ng

le
 C

or
re

ct
io

n
A

pp
lie

d
(d

eg
re

es
)

Segmented Correction Curve Approximation Plot

Least-squares approximation of the correction curve

On-curve approximation of the correction curve
Ideal correction curve

Figure 20: Comparison of ideal correction curve to
linear interpolation with parameters determined by

on-curve and least-squares method
The least-squares method reduces the amount of storage param-
eters needed by about 50% for the same maximum error and is
less sensitive to single measurement outliers. Therefore, the least-
squares method will be used here to determine the linear interpo-
lation support points.

Implementation

The correction curve needs to be approximated using a piecewise
linear function. Because the support point should be chosen in a
least-squares error fashion, the data before and after the support
point also contributes in determining its final value.

This creates a problem for the first and last point. The first sup-
port point at 0° only has a correction curve to the right side of
the point, so that the data close to 360° would not be taken into
account. To avoid this problem, the correction curve will be
repeated three times, and a piecewise linear least-squares approx-
imation of that curve will be calculated. Then, only the central
part will be used to choose the parameters used. This concept is
shown in Figure 21.

12
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

0 90 180 270 360 450 540 630 720 810 900 990 1080

Sensor Angle (degrees)

75

80

85

90

95

100

C
or

re
ct

io
n

C
ur

ve
 (d

eg
re

es
)

573.75 585 596.25

Sensor Angle (degrees)

92

93

94

95

96

C
or

re
ct

io
n

C
ur

ve
 (d

eg
re

es
)

Figure 21: Correction curve replicated three times,
least-squares fit, central points used

Fit Calculation

The code to replicate the correction curve and calculate the fit is
given below:

%% piecewise linear approximation of the correction curve
lin_sup_nodes = 32;

% repeat the correction table three times to avoid
% corner effects on correction calculation.
triple_correction_curve = repmat(correction_curve,3,1);
triple_correction_curve(end+1) = triple_correction_curve(1);

% do the same with the angle input
triple_output_grid = 0:(360/4096):(3*360);

% calculate support points
XI_lin_triple = linspace(0,3*360,lin_sup_nodes*3+1);
YI_lin_triple = lsq_lut_piecewise(triple_output_grid(:), ...
triple_correction_curve, XI_lin_triple);

% use only the central points to calculate the correction:
YI_lin = YI_lin_triple(lin_sup_nodes+1 : 2*lin_sup_nodes+1);
XI_lin = linspace(0,360,lin_sup_nodes+1);

The lsq_lut_piecewise function is reprinted in Appendix A.

The list of correction parameters for 32-point linear interpolation
is found below:

Table 4: Linear interpolation parameters
Angle (°) Amplitude (°)

0.00 97.95

11.25 98.34

22.50 98.04

33.75 96.95

45.00 94.96

56.25 92.67

67.50 90.31

78.75 87.46

90.00 84.57

101.25 81.91

112.50 79.57

123.75 77.64

135.00 76.34

146.25 76.17

157.50 77.11

168.75 79.59

180.00 83.70

191.25 87.86

202.50 91.68

213.75 93.85

225.00 95.02

236.25 95.43

247.50 94.88

258.75 94.16

270.00 93.38

281.25 92.46

292.50 91.96

303.75 91.77

315.00 92.69

326.25 93.61

337.50 95.48

348.75 96.77

360.00 97.95

Note that a value for 360° was also added, even though it is iden-
tical to the one for 0°. This is needed to make correction of angles
between 348.75° and 360° possible without using tricks.

13
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Application

In MATLAB, the application of the correction is straightforward
using the built-in 1D interpolation function:

%% perform linear interpolation
restored_linear_signal = mod(sensor_data(:) + ...
 interp1(XI_lin,YI_lin,sensor_data(:),’linear’),360);

The same function can also be implemented as follows to demon-
strate how the calculation can be performed in a microcontroller:

%% perform linear interpolation manually
restored_linear_signal_man = zeros(length(sensor_data),1);
lin_sup_res = 360/lin_sup_nodes;
for i = 1:length(sensor_data)
 % get index of table entry before the sensor angle
 baseangle_idx = floor(sensor_data(i)/lin_sup_res);
 baseangle = baseangle_idx*lin_sup_res;
 % get number of degrees that we are past the table entry
 offsetangle = sensor_data(i) - baseangle;
 % correction is base +
 correctionval = YI_lin(baseangle_idx+1) + ...
 ((YI_lin(baseangle_idx+2) - ...
 YI_lin(baseangle_idx+1)) * offsetangle/lin_sup_res);
 restored_linear_signal_man(i) = mod(sensor_data(i) + ...
 correctionval,360);

end

This code performs the correction for all the sensor angles in
sensor_data.

In a microcontroller implementation, efficient use of bit shifting
and bit masking can remove the need for division operations. The
modulo operation can be replaced by the deliberate use of integer
overflows. However, subtraction, addition, and multiplication are
still required.

The remaining output inaccuracy after linearization for our exam-
ple is shown below over the 16 recorded angles. The remaining
error decreases by adding more linearization points.

0 45 90 135 180 225 270 315 360

Encoder Angle (degrees)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
em

ai
ni

ng
 E

rr
or

 A
fte

r L
in

ea
riz

at
io

n
(d

eg
re

es
)

Remaining Output Error After Piecewise-Linear Correction

Linear interpolation (8 segments)

Linear interpolation (12 segments)

Linear interpolation (16 segments)

Linear interpolation (24 segments)

Linear interpolation (32 segments)

Figure 22: Remaining angle error after linearization
with an increasing amount of linear support nodes for

the example in this document

14
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Lookup Table
Concept

For linear interpolation of the correction curve, it is required to
interpolate between the support points. This requires some math-
ematical operations, which may often take too long.

Instead of interpolating between two supporting values, it is pos-
sible to use the closest correction value directly. This method is
referred to as a lookup table in this document.

The correction value for each set of angles, or bin, will be chosen
as the average of the correction curve values inside that bin. This
will ensure the lowest resulting RMS error of the correction curve
representation. Other strategies, such as choosing the average
between the minimum and maximum correction of the respective
bin, are possible, but will not be used in this document.

Using a lookup table requires storing a large number of values
to reach acceptable performance. About 256 values are typically
needed. The number of values does not need to be a power of
two; however, microcontroller implementations in fixed-point
code will benefit from using powers of two for the number of
table entries.

Implementation

At first, the bin boundaries need to be defined. Then, the aver-
age of the correction curve values inside that boundary can be
determined.

%% look-up table approximation of the correction curve
number_table_entries = 64;

% choose bin boundaries
XI_binlimits = linspace(0,360,number_table_entries+1);

% find average of point for each bin using function bin_lut:
YI_lut = bin_mean(ordered_output_grid(:), ...

 correction_curve(:), XI_binlimits(:));

The function bin_lut is printed in Appendix B. It should be noted
that correction curve values that are exactly on the boundary
between two bins are included in the average of the bin for the
larger values, and are excluded from the bin for the smaller val-
ues. For example, with 64 entries, the correction curve data at an
angle of 180° are used for the value of the bin 180° … 185.625°,
and are not used for the bin 174.375° … 180°.

An exemplary resulting correction curve for 64 table entries is
seen in Figure 23.

0 45 90 135 180 225 270 315 360

Sensor Angle (degrees)

75

80

85

90

95

100

C
or

re
ct

io
n

Va
lu

e
(d

eg
re

es
)

Correction Curve Approximation Using Lookup Table

Ideal correction curve

64 entry lookup table approximation

Figure 23: Lookup table representation
of the correction curve using 64 bins

The resulting table for 64 entries can be found in Table 5.

Table 5: Lookup table for 64 entries
Bin (°) Correction (°) Bin (°) Correction (°)

0.000 ≤ x < 5.625 98.05 180.000 ≤ x < 185.625 84.83
5.625 ≤ x < 11.250 98.25 185.625 ≤ x < 191.250 86.85

11.250 ≤ x < 16.875 98.26 191.250 ≤ x < 196.875 88.72
16.875 ≤ x < 22.500 98.11 196.875 ≤ x < 202.500 90.69
22.500 ≤ x < 28.125 97.78 202.500 ≤ x < 208.125 92.24
28.125 ≤ x < 33.750 97.23 208.125 ≤ x < 213.750 93.31
33.750 ≤ x < 39.375 96.45 213.750 ≤ x < 219.375 94.12
39.375 ≤ x < 45.000 95.48 219.375 ≤ x < 225.000 94.73
45.000 ≤ x < 50.625 94.39 225.000 ≤ x < 230.625 95.13
50.625 ≤ x < 56.250 93.24 230.625 ≤ x < 236.250 95.32
56.250 ≤ x < 61.875 92.10 236.250 ≤ x < 241.875 95.29
61.875 ≤ x < 67.500 90.91 241.875 ≤ x < 247.500 95.05
67.500 ≤ x < 73.125 89.61 247.500 ≤ x < 253.125 94.68
73.125 ≤ x < 78.750 88.20 253.125 ≤ x < 258.750 94.31
78.750 ≤ x < 84.375 86.74 258.750 ≤ x < 264.375 93.99
84.375 ≤ x < 90.000 85.31 264.375 ≤ x < 270.000 93.62
90.000 ≤ x < 95.625 83.92 270.000 ≤ x < 275.625 93.12
95.625 ≤ x < 101.250 82.59 275.625 ≤ x < 281.250 92.66
101.250 ≤ x < 106.875 81.33 281.250 ≤ x < 286.875 92.37
106.875 ≤ x < 112.500 80.16 286.875 ≤ x < 292.500 92.14
112.500 ≤ x < 118.125 79.09 292.500 ≤ x < 298.125 91.87
118.125 ≤ x < 123.750 78.14 298.125 ≤ x < 303.750 91.76
123.750 ≤ x < 129.375 77.32 303.750 ≤ x < 309.375 92.05
129.375 ≤ x < 135.000 76.67 309.375 ≤ x < 315.000 92.52
135.000 ≤ x < 140.625 76.29 315.000 ≤ x < 320.625 92.86
140.625 ≤ x < 146.250 76.21 320.625 ≤ x < 326.250 93.32
146.250 ≤ x < 151.875 76.41 326.250 ≤ x < 331.875 94.13
151.875 ≤ x < 157.500 76.87 331.875 ≤ x < 337.500 95.02
157.500 ≤ x < 163.125 77.72 337.500 ≤ x < 343.125 95.77
163.125 ≤ x < 168.750 79.00 343.125 ≤ x < 348.750 96.44
168.750 ≤ x < 174.375 80.58 348.750 ≤ x < 354.375 97.07
174.375 ≤ x < 180.000 82.54 354.375 ≤ x < 360.000 97.63

15
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Application

In MATLAB, the application of the correction is straightforward
using the built-in 1D interpolation function previous-neighbor value:

restored_lut_signal = mod(sensor_data(:) + ...
 interp1(XI_binlimits(1:end-1), ...

 YI_lut, sensor_data(:),'previous','extrap'),360);

The same function can also be implemented as follows to demon-
strate how the calculation can be performed in a microcontroller:

number_table_entries = 64;
restored_lut_signal_man = zeros(length(sensor_data),1);
table_res = 360/number_table_entries;
for i = 1:length(sensor_data)
 % get index of table entry before the sensor angle
 baseangle_idx = floor(sensor_data(i)/table_res);
 correctionval = YI_lut(baseangle_idx+1);
 restored_lut_signal_man(i) = mod(sensor_data(i) + ...
 correctionval,360);

end

This code performs the correction for all the sensor angles in
sensor_data.

In a microcontroller implementation, efficient use of bit shifting
and bit masking can remove the need for division operations. The
angle can be used to directly index the table entry after bit shifting
or masking. The modulo operation can be replaced by the deliber-
ate use of integer overflows. Only an addition is still required.

The remaining output inaccuracy after linearization for our exam-
ple is shown below over the 16 recorded angles. The remaining
error decreases by adding more lookup table entries.

0 45 90 135 180 225 270 315 360

Encoder Angle (degrees)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
em

ai
ni

ng
 O

ut
pu

t E
rr

or
 A

fte
r L

oo
ku

p
Ta

bl
e

(d
eg

re
es

)

 32 entries

 64 entries

128 entries

256 entries

512 entries

Figure 24: Remaining angle error after linearization
with an increasing amount of lookup table entries

for the example in this document

Performance Comparison
To compare the performance of the three methods explained in this
document, the difference between the ideal correction curve and
the representation using the three discussed methods was analyzed.
This was done using the correction curve from Figure 16. Other
curves will give different results.

In on-axis applications where the required corrections are small,
the number of entries used could be reduced.

To compare the storage needs of the methods, it was assumed that
one storage entry is needed for each value stored for the lookup
table and linear interpolation.

For harmonic linearization, two storage entries (phase and ampli-
tude) are needed per harmonic, and a DC offset needs to be stored
as well. This brings the amount of storage entries for n harmonics
to 2 × n + 1.

For harmonic correction, the harmonics applied were chosen in
order of decreasing amplitude. This means, for example, that
correction of the 9th harmonic (amplitude of 0.0429°) was added
before adding correction for the 7th and 8th harmonics (amplitudes
of 0.0361 and 0.0257°, respectively). For side-shaft applications,
it is common that the 2nd and 4th harmonic are much stronger than
the others. In such a case, only correcting these two may be useful.

The maximum absolute error over a full rotation was determined
and plotted over storage requirements in Figure 25.

2 5 10 20 50 100 200 500 1000

Number Of Storage Entries Used

0.1

0.2

0.5

1

2

5

10

M
ax

im
um

 R
em

ai
ni

ng
 E

rr
or

 (d
eg

re
es

)

Remaining Angle Error After Correction

Harmonic correction (2 entries per harmonic)

Linear interpolation

Lookup table

Figure 25: Remaining maximum values of correction
inaccuracy for harmonic, linear, and lookup table

correction for the example from this document

16
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Conclusion
This document details three possible methods to linearize angular
sensor data using a microcontroller. The implementations cover a
wide range of memory and processing time requirements.

Contact an Allegro representative for any remaining questions or
support.

17
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

APPENDIX A: FUNCTION LSQ_LUT_PIECEWISE
From https://uk.mathworks.com/matlabcentral/fileexchange/40913-piecewise-linear-least-square-fit.

Copyright (c) 2013, Guido Albertin

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
function [YI] = lsq_lut_piecewise(x, y, XI)
% LSQ_LUT_PIECEWISE Piecewise linear interpolation for 1-D interpolation (table lookup)
% YI = lsq_lut_piecewise(x, y, XI) obtain optimal (least-square sense)
% vector to be used with linear interpolation routine.
% The target is finding Y given X the minimization of function
% f = |y-interp1(XI,YI,x)|^2
%
% INPUT
% x measured data vector
% y measured data vector
% XI break points of 1-D table
%
% OUTPUT
% YI interpolation points of 1-D table
% y = interp1(XI,YI,x)
%
if size(x,2) ~= 1
 error('Vector x must have dimension n x 1.');
elseif size(y,2) ~= 1
 error('Vector y must have dimension n x 1.');
elseif size(x,1) ~= size(x,1)
 error('Vector x and y must have dimension n x 1.');
end

% matrix defined by x measurements
A = sparse([]);

% vector for y measurements
Y = [];

for j=2:length(XI)

 % get index of points in bin [XI(j-1) XI(j)]
 ix = x>=XI(j-1) & x<XI(j);

 % check if we have data points in bin
 if ~any(ix)
 warning(sprintf('Bin [%f %f] has no data points, check estimation. Please re-define X vector accordingly.',XI(j-1),XI(j)));
 end

 % get x and y data subset
 x_ = x(ix);
 y_ = y(ix);

 % create temporary matrix to be added to A
 tmp = [((-x_+XI(j-1)) / (XI(j)-XI(j-1)) + 1) ((x_-XI(j-1)) / (XI(j)-XI(j-1)))];

 % build matrix of measurement with constraints
 [m1,n1]=size(A);
 [m2,n2]=size(tmp);
 A = [[A zeros(m1,n2-1)];[zeros(m2,n1-1) tmp]];

 % concatenate y measurements of bin
 Y = [Y; y_];
end

% obtain least-squares Y estimation
YI=A\Y;

https://uk.mathworks.com/matlabcentral/fileexchange/40913-piecewise-linear-least-square-fit%0D

18
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

APPENDIX B: FUNCTION BIN_MEAN
Copyright (c) 2018, Dominik Geisler, Allegro MicroSystems Germany GmbH

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

function [YI] = bin_mean(x, y, XI)
% BIN_LUT bin lookup table for 1-D interpolation (table lookup)
% YI = lsq_lut_piecewise(x, y, XI) obtains optimal (least-square sense) bin
% values for a nearest-neighbour look-up table between bin boundaries defined in XI.

if ((size(x,1) ~= 1) && (size(x,2) ~= 1))
 error('Vector x must have dimension n x 1 or 1 x n');
elseif ((size(y,1) ~= 1) && (size(y,2) ~= 1))
 error('Vector y must have dimension n x 1 or 1 x n');
elseif length(x) ~= length(y)
 error('Vector x and y must have the same length');
end

YI = zeros((length(XI)-1),1);
for j=1:(length(XI)-1)
 YI(j) = mean(y((x>=XI(j)) & (x<XI(j+1))));
end

19
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

APPENDIX C: FUNCTION ENTIRE SCRIPT USED IN THIS APPLICATION NOTE
Copyright (c) 2018, Dominik Geisler, Allegro MicroSystems Germany GmbH

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

%% sensor data definition
angle_input = [0:11.25:348.75];
sensor_data = [266.31 278.61 290.39 301.99 312.45 323.00 332.75 342.69 352.79 3.16 14.24 26.02 38.94 52.91 67.15 82.18 97.12 111.45 124.98 137.46 148.62 158.82
167.96 176.48 184.48 192.92 201.27 210.50 220.43 230.98 242.31 254.36];

%% Check rising reference angle
if any(angle_input<0) || any(angle_input>360) || any(diff(angle_input)<=0)
 error('reference angle must be monotonuously rising between 0 and 360');
end

%% Check correct sensor angle range
if any(sensor_data<0) || any(sensor_data>360)
 error('sensor angle must be between 0 and 360');
end

%% preprocessing
sensor_data_2 = sensor_data(:);
angle_input = angle_input(:);

% check if rising continuously with at most one overflow
if any(diff(sensor_data_2) == 0)
 error('sensor data must be monotonously increasing')
elseif sum(diff(sensor_data_2) < 0) <= 1
 % rising angle data with zero or one overflow, overflow will be corrected
 sensor_data_2 = sensor_data_2(:) + 360*cumsum([false; diff(sensor_data_2(:)) < 0]);
elseif sum(diff(sensor_data_2) < 0) > 1
 error('only one data decrease permitted as overflow')
end

% correctly wrap around sensor data
rollovercorrection = round((mean(sensor_data_2) - 180)/360) * 360;
sensor_data_2 = sensor_data_2 - rollovercorrection;

% extend sensor data
sensor_data_ext = [sensor_data_2(:); sensor_data_2(:)+360; ...
 sensor_data_2(:)+720];
% extend input data
angle_input_ext = [angle_input(:); angle_input(:)+360; ...
 angle_input(:)+720];

%% plot magnet measurements after preprocessing finished
figure;plot([angle_input(:)],[sensor_data_2(:)],'o-');
xlabel('Encoder angle [deg]');
ylabel('Output angle [deg]');
grid on;
xlim([0 360]);
title({'Output field direction over encoder direction'});

%% use spline to move the data from an ordered input grid
% onto an ordered output grid:
ordered_output_grid = 0:(360/4096):(360-360/4096);
intermediategrid = ordered_output_grid + 360;
projection = spline(sensor_data_ext, angle_input_ext, ...
 intermediategrid);

% calculate the required correction of the data:
correction_curve = projection - intermediategrid;
correction_curve = correction_curve(:);

%% Fourier transform the correction, discarding the values after the 16th
% and scaling energy by length of the table

20
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

fft_table = fft(correction_curve)/length(ordered_output_grid);

offset_correction = abs(fft_table(1));
correction_pha = angle(fft_table(2:17));
correction_amp = 2*abs(fft_table(2:17));

%% apply harmonic correction for four harmonics
restored_signal_4_harmonics = mod(sensor_data + (...
 offset_correction + ...
 correction_amp(1)*cos(1*(sensor_data/360*2*pi) + correction_pha(1)) + ...
 correction_amp(2)*cos(2*(sensor_data/360*2*pi) + correction_pha(2)) + ...
 correction_amp(3)*cos(3*(sensor_data/360*2*pi) + correction_pha(3)) + ...
 correction_amp(4)*cos(4*(sensor_data/360*2*pi) + correction_pha(4)) ...
),360);

%% piecewise linear approximation of the correction curve
lin_sup_nodes = 32;

% repeat the correction table three times to avoid
% corner effects on correction calculation.
triple_correction_curve = repmat(correction_curve,3,1);
triple_correction_curve(end+1) = triple_correction_curve(1);

% do the same with the angle input
triple_output_grid = 0:(360/4096):(3*360);

% calculate support points
XI_lin_triple = linspace(0,3*360,lin_sup_nodes*3+1);
YI_lin_triple = lsq_lut_piecewise(triple_output_grid(:), ...
triple_correction_curve, XI_lin_triple);

% use only the central points to calculate the correction:
YI_lin = YI_lin_triple(lin_sup_nodes+1 : 2*lin_sup_nodes+1);
XI_lin = linspace(0,360,lin_sup_nodes+1);

%% perform linear interpolation
restored_linear_signal = mod(sensor_data(:) + ...
 interp1(XI_lin,YI_lin,sensor_data(:),'linear'),360);

%% perform linear interpolation manually
restored_linear_signal_man = zeros(length(sensor_data),1);
lin_sup_res = 360/lin_sup_nodes;
for i = 1:length(sensor_data)
 % get index of table entry before the sensor angle
 baseangle_idx = floor(sensor_data(i)/lin_sup_res);
 baseangle = baseangle_idx*lin_sup_res;
 % get number of degrees that we are past the table entry
 offsetangle = sensor_data(i) - baseangle;
 % correction is base +
 correctionval = YI_lin(baseangle_idx+1) + ...
 ((YI_lin(baseangle_idx+2) - ...
 YI_lin(baseangle_idx+1)) * offsetangle/lin_sup_res);
 restored_linear_signal_man(i) = mod(sensor_data(i) + ...
 correctionval,360);
end

%% perform look-up table correction
number_table_entries = 64;
% choose bin boundaries
XI_binlimits = linspace(0,360,number_table_entries+1);

% find average of point for each bin using function bin_lut:
YI_lut = bin_mean(ordered_output_grid(:), ...
 correction_curve(:), XI_binlimits(:));

%% apply look-up table linearization
restored_lut_signal = mod(sensor_data(:) + ...
 interp1(XI_binlimits(1:end-1), ...
 YI_lut, sensor_data(:),'previous','extrap'),360);

%% apply look-up table linearization manually
restored_lut_signal_man = zeros(length(sensor_data),1);
table_res = 360/number_table_entries;
for i = 1:length(sensor_data)
 % get index of table entry before the sensor angle
 baseangle_idx = floor(sensor_data(i)/table_res);
 correctionval = YI_lut(baseangle_idx+1);
 restored_lut_signal_man(i) = mod(sensor_data(i) + ...
 correctionval,360);
end

%% plot the remaining error after lienarization with the three methods
figure;
plot(angle_input(:),mod(180+restored_linear_signal(:)-angle_input(:),360)-180,'.-', ...
 angle_input(:),mod(180+restored_signal_4_harmonics(:)-angle_input(:),360)-180,'.-', ...
 angle_input(:),mod(180+restored_lut_signal(:)-angle_input(:),360)-180,'.-' ...
);
grid on;legend('Linear interpolation (32 segments)','harmonic correction (4 harmonics)','look-up table (64 entries)');
xlim([0 360]); xlabel('Measured angle [deg]'); ylabel('Expected error after linearization [deg]');

21
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

For the latest version of this document, visit our website:

www.allegromicro.com

Copyright 2019, Allegro MicroSystems.

The information contained in this document does not constitute any representation, warranty, assurance, guaranty, or inducement by Allegro to the
customer with respect to the subject matter of this document. The information being provided does not guarantee that a process based on this infor-
mation will be reliable, or that Allegro has explored all of the possible failure modes. It is the customer’s responsibility to do sufficient qualification
testing of the final product to ensure that it is reliable and meets all design requirements.

Revision History
Number Date Description

– July 19, 2018 Initial release

1 July 26, 2019 Minor editorial updates

http://www.allegromicro.com

